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Abstract. We describe an infeasible-interior-pointalgorithmfor monotone variational inequality
problems and prove that it converges globally and superlinearly under standard conditions plus a
constant rank constraint quali�cation. The latter condition represents a relaxation of the two types
of assumptions made in existing superlinear analyses; namely, linearity of the constraints and linear
independence of the active constraint gradients.

AMS(MOS) subject classi�cations. 90C33, 90C30, 49M45

1. Introduction. We consider the monotone variational inequality over a closed
convex set C � IR

N :

Find z 2 C such that (z0 � z)T�(z) � 0; for all z0 2 C.(1)

The mapping � : IRN ! IR
N is assumed to be continuously di�erentiable (C1) and

monotone; the latter property means that

(z0 � z)T (�(z0)� �(z)) � 0 for all z0; z 2 IR
N .

We assume that C is de�ned as an intersection of �nitely many algebraic inequalities;
that is,

C = fz 2 IR
N j g(z) � 0g;(2)

where g : IRN ! IR
P is a C2 function for which each component function gi, i =

1; 2; : : : ; P , is convex.
The mixed nonlinear complementarity (NCP) formulation of this problem is: Find

the vector triple (z; �; y) 2 IR
N+2P such that�

0
y

�
=

�
f(z; �)
�g(z)

�
; (�; y) � 0; �T y = 0;(3)

where f : IRN+P ! IR
N is the C1 function de�ned by

f(z; �) = �(z) +Dg(z)T�:(4)

Note that f is monotone with respect to z 2 IR
N for all vectors � 2 IR

P with nonneg-
ative components (that is, � 2 IR

P
+). The mapping

(z; �)!

�
f(z; �)
�g(z)

�
(5)
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is monotone because monotonicity of � and of each function Dgi means that its
Jacobian matrix�

Dzf DgT

�Dg D�g

�
=

�
D�(z) +

PP
i=1 �iD

2gi(z) Dg(z)T

�Dg(z) 0

�
(6)

is positive semide�nite for all (z; �) 2 IR
N � IR

P
+.

It is well known [3] that, under suitable conditions on g such as the well-known
Slater constraint quali�cation, z solves (1) if and only if there exists a multiplier �
such that (z; �) solves (3).

We solve (1) by a method based on the interior-point algorithm of Wright and
Ralph [18]. Our new algorithm di�ers from the one in [18] in that it is simpler to
specify and can be adapted to the case of mixed NCP. In fact, the new algorithm is a
natural extension of the algorithm of Wright [14] for monotone linear complementarity
problems.

We show that under certain assumptions the method converges globally and su-
perlinearly to the solution set of (3), even in some situations in which the solution
does not satisfy a strong uniqueness and nondegeneracy condition.

Superlinear convergence for interior-point methods was discussed �rst by Zhang,
Tapia, and Dennis [22]; see also Ye, G�uler, Tapia, and Zhang [21]. A recent paper by
Sun and Zhao [11] presents a feasible interior-point method for monotone variational
inequalities where the set C is polyhedral, that achieves global and local quadratic
convergence. Infeasible-interior-point methods for the latter class were described by
Wright in [15], with improvements in [13, 14]. For nonlinear monotone complemen-
tarity problems, Wright and Ralph [18] describe a superlinearly convergent method
that requires invertibility of the principal submatrix of the Jacobian corresponding to
basic rows and columns. This condition actually guarantees uniqueness of the solution
point (z�; ��), in particular, uniqueness of the multiplier �� in (3). Similar assump-
tions almost always are made in the asymptotic analysis of nonlinear programming
algorithms. The main point of this paper is to show that superlinear convergence also
occurs under weaker assumptions that allow the multiplier � to be nonunique. In fact,
the algorithm here is the only one we know of for nonlinear programs with nonlinear
constraints and nonunique multipliers for which convergence is superlinear.

We brie
y mention some related work in the area of sequential quadratic program-
ming and Newton methods for nonlinear programming and variational inequalities but
do not address the burgeoning related area of nonsmooth equations. Like much of
the literature concerning superlinear local convergence (for example, Bonnans [1] and
Pang [7]), our main result, Theorem 3.3, assumes that certain conditions hold at a pre-
existing solution point. Such results are called \point-of-attraction" results, but unlike
Theorem 3.3, the hypotheses needed for superlinear convergence in previous results
known to the authors imply local uniqueness of the solution. Kantorovich-Newton
results (Josephy [5]) are of a slightly di�erent nature: They specify conditions on the
system and the initial point that ensure both existence of and convergence to a locally
unique solution point. For both types of results, local uniqueness of the pair (z�; ��)
is used to prove superlinear convergence.

Our use of weaker-than-usual nondegeneracy assumptions has practical relevance
since, for large-scale problems, degeneracy or near-degeneracy at solution points is
typical. In this paper, we assume that the active constraint gradients satisfy a constant
rank constraint quali�cation or CRCQ at the solution. This condition \interpolates"
between the two most commonlymade assumptions|linear independence of the active
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constraint gradients and linearity of the constraint function g(z)|but is weaker than
both. Our paper does not resolve the question of whether the CRCQ is necessary for
superlinear convergence. Moreover, in practice, the issues are somewhat clouded by
numerical e�ects: Roundo� error in the computed solutions cause the implemented
algorithm to behave slightly di�erently from the theoretical predictions. We examine
this issue further in Section 7.

Possibly the best known application of (1) is the convex programming problem
de�ned by

min
z

�(z) subject to z 2 C;(7)

where � : IRN ! IR is C2 and convex. Let � = D�. It is easy to show that the
NCP formulation (3),(4) is equivalent to the standard Karush-Kuhn-Tucker (KKT)
conditions for (7). If a constraint quali�cation holds, then solutions of (7) (and (1))
correspond, via KKT multipliers, to solutions of (3){(4).

Solutions of (1) and (7) coincide when a constraint quali�cation is satis�ed.
The paper is developed as follows. In the remainder of this section, we summarize

our notation and terminology. In Section 2, we describe the algorithm for solving (3),
omitting some of the details because of the similarity to the algorithm of Wright and
Ralph [18]. In Section 3, we prove the global convergence result for this algorithm
and state the local superlinear convergence result. The analysis in this section mirrors
that of [18] but di�ers in some of the details. The remainder of the paper is devoted
to outlining and proving the superlinear convergence theorem. In Section 4 we state
and discuss the assumptions that are used in this theorem. Section 5 shows that
the steps generated by the algorithm during its �nal stages satisfy a certain critical
bound. We divide Section 5 into subsections and provide ample motivating discussion
so that readers can see the thrust of our argument without our going into the details.
Section 6 describes conditions under which one of our key assumptions|existence of
a limit point|is satis�ed, and also proves some auxiliary results that follow from the
assumptions of Section 4. Finally, we discuss computational experience and outline
some open questions in Section 7.

Notation and Terminology. Unless otherwise speci�ed, k � k denotes the Eu-
clidean norm of a vector, while

IR
P
+ = fy 2 IR

P j y � 0g; IR
P
++ = fy 2 IR

P j y > 0g:

For any two vectors c and d, we frequently use (c; d) as shorthand for (cT ; dT )T . The
vector (1; 1; : : : ; 1) is denoted by e, while z+ is obtained by replacing all negative
components in the vector z by zero. The closed unit ball is denoted by IB. Derivatives
are indicated by D, or Dz for a partial derivative with respect to z.

Iteration indices (usually k) appear as superscripts on vectors and matrices and
as subscripts on scalars. Subscripts are used to indicate components of vectors and
matrices.

If  is a function mapping IR+ to IR+, we write  (� ) = O(� ) if there are constants
�� > 0 and C > 0 such that  (� ) � C� for � 2 (0; �� ].

The kernel or null space of a matrix H 2 IR
p�q is

kerH = fd 2 IR
q jHd = 0g;

while the range space is denoted by

ranH = fHd j d 2 IR
qg:
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Given ; 6= I � f1; 2; : : :; pg and ; 6= J � f1; 2; : : :; qg, we de�ne three submatrices of
H as follows:

HIJ = [Hij]i2I;j2J ; H�J = [Hij]i=1;:::;p;j2J ; HI� = [Hij]i2I;j=1;:::;q:

If w 2 IR
p and I � f1; 2; : : : ; pg, then wI denotes the subvector [wi]i2I. In dealing

with the function g : IRN ! IR
P in (2), we use DgI(z) to denote the jIj�N Jacobian

of gI with respect to z.
Often the arguments are omitted from the functions and Jacobians f(z; �), g(z),

Dzf(z; �), and so on. In such cases, the arguments should be assumed to be z, �, and
y, or any applicable combination thereof.

We use S to denote the solution set for (3) and Sz;� to denote its projection onto
its �rst N + P components; that is,

S = f(z; �; y) j (z; �; y) solves (3)g; Sz;� = f(z; �) j (z; �;�g(z)) 2 Sg:(8)

The set S is convex if the function f given by (4) is monotone, as we will assume later;
this follows from Proposition 3.1 of Harker and Pang [3] because the NCP (3) is then
equivalent to a monotone variational inequality over a closed convex set. Convexity
of Sz;� also follows. In this case, we can partition f1; 2; : : : ; Pg into two index sets B
and N such that

��N = 0; y�B = 0; all (z�; ��; y�) 2 S.(9)

The solution (z�; ��; y�) is strictly complementary if �� + y� > 0; that is, ��B > 0 and
y�N > 0. We also use this term when referring to just the z and � components of the
solution. That is, we say (z�; ��) is strictly complementary if ��B > 0 and gN (z�) < 0.

The distance of a vector w 2 IR
p to a set T � IR

p is

distT (w) = inffkw � w�k jw� 2 T g:

Given H � IR
p�q, we say H has constant column rank (CCR) if for each sequence

fHkg � H converging to some H 2 IR
p�q and each ; 6= J � f1; 2; : : : ; qg, we have

rankHk
�J ! rankH�J ;

that is, rankHk
�J = rankH�J for all k su�ciently large.

Given the current point (z; �; y) and a search direction (�z;��;�y), we de�ne
the complementarity measure � as

� = �T y=P;

and the intermediate quantities (z(�); �(�); y(�)) and �(�) by

(z(�); �(�); y(�)) = (z; �; y) + �(�z;��;�y); �(�) = �(�)T y(�)=P:

2. An Algorithm for Mixed NCP. We now outline an infeasible-interior-
point algorithm for mixed NCP that synthesizes two earlier methods: the algorithm
described by Wright and Ralph [18] for monotone NCP and the algorithm of Wright
[14] for linear complementarity problems. Neither of these formulations applies ex-
plicitly to the mixed problem. In the case of linear problems, a mixed framework
is unnecessary in any case, since there are strong equivalence relationships between
mixed problems and nonmixed problems.
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Our description is terse because much of the motivation can be found in the
papers cited above.

Given a starting point (z0; �0; y0) with (�0; y0) > (0; 0), the algorithm generates
a sequence of iterates (zk; �k; yk) that satis�es this same positivity condition. For
each vector triple (z; �; y) for which (�; y) > 0, we de�ne the residuals rf and rg by�

rf (z; �)
rg(z; y)

�
=

�
�f(z; �)
y + g(z)

�
:(10)

Another useful quantity is the vector e, de�ned by e = (1; 1; : : : ; 1)T . As is usual in
descriptions of interior-point methods, we turn positive vectors into diagonal matrices
by capitalizing their names; that is,

� = diag(�1; �2; : : : ; �m); Y = diag(y1; y2; : : : ; ym):

When (z; �; y) = (zk; �k; yk), we sometimes attach a subscript or superscript k to the
quantities �, r, �, Y to make the dependence on (zk; �k; yk) explicit.

The algorithm can be thought of as a modi�ed Newton algorithm applied to the
following system of constrained nonlinear equations.24 rf (z; �)

rg(z; y)
��Y e

35 = 0; (�; y) � 0:(11)

The \modi�cations" are needed to keep �k and yk from prematurely approaching the
boundary of the feasible region de�ned by the conditions y � 0 and � � 0. Line
searches are used and, on some iterates, the search direction is skewed toward the
interior of the positive orthant, so that longer steps can be taken without violating
positivity. Near the solution, the algorithm reverts to pure Newton steps, allowing
the rapid local convergence properties of this method to take e�ect.

The major computational operation in the algorithm is the repeated solution of
2P + N -dimensional linear systems of the form24 Dzf DgT 0

�Dg 0 �I
0 Y �

3524 �z
��
�y

35 =

24 rf (z; �)
rg(z; y)

��Y e+ ~��ke

35 ;(12)

where the centering parameter ~� lies in the range [0; 12 ]. These equations are simply
the Newton equations for the nonlinear system mentioned earlier, except for the ~�
term. The algorithms searches along the direction obtained from (12).

In the algorithm of Wright and Ralph [18] (which applies to nonmixed NCP), the
search for � takes place along a curved arc rather than a straight line. The curvature
on this arc ensures that the residual term decreases linearly with �. It is not clear how
to extend this strategy to the mixed case, so the algorithm in this paper uses a simpler
straight-line search. The global and local convergence properties are essentially the
same as in [18].

At each iteration, the algorithm computes a fast step|a pure Newton step for
which ~� = 0 in (12). If the fast step fails to give a su�ciently large decrease in �,
we revert to a safe step by assigning a positive value to ~�. This modi�cation allows
a longer step to be taken, so that a certain minimal amount of progress toward the
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solution can be made. In choosing the step length �, we require not only that for all
iterates (zk; �k; yk), (�k; yk) remain strictly positive, but also that they satisfy

�ki y
k
i � 
k�k; i = 1; 2; : : : ; P;(13)

for positive values of 
k bounded away from zero. This condition ensures that the
pairwise products �iyi stay roughly in balance as they approach zero, so that no
single one of them vanishes much faster than the others. On fast steps, we expand
this region by decreasing 
 slightly, to allow steps of length near 1 to be taken.

The algorithm is parametrized by a variety of positive scalar constants, which we
specify now for easy reference. Their roles are explained as they arise in subsequent
discussions:

� 2 (0; 1); �� 2 (0; 12); �� 2 (0; 1]; � 2 (0; 1); �̂ 2 (0; 1);

�min > 0 such that kr0fk � �min�0 and kr0gk � �min�0;(14)

�max = �min exp(3=2); 0 < 
min < 
max �
1
2 ;

�
 2 (0; 12); � 2 (0;min((1
2
�
)1=�̂ ; 1� �))

where exp(�) is the exponential function. The starting point (z0; �0; y0) is assumed to
satisfy

�0i y
0
i � 
max�0:(15)

The main algorithm can now be speci�ed.

t0  0; 
0  
max; �0  �min;
for k = 0; 1; 2; : : :,

if �k = 0,
terminate with solution (zk; �k; yk);

(zk+1; �k+1; yk+1) fast(zk; �k; yk; tk; 
k; �k);
if �k+1 � ��k


k+1  
min + �
tk(
max � 
min); �k+1  (1 + �
tk+1)�k;
tk+1  tk + 1 ;

else

(zk+1; �k+1; yk+1) safe(zk; �k; yk; tk; 
k; �k);

k+1  
k; �k+1  �k;
tk+1  tk;

end for.

The fast step is taken only if it decreases the complementarity gap � by at least a
factor of �. The counter tk keeps track of the number of successful fast steps prior to
iteration k. As we see in the de�nitions of the subroutines fast and safe below, the
value of tk indirectly governs the distance �k that we move along the current search
direction.

The coe�cient matrix in (12) is the same for both fast and safe steps, so only one
matrix factorization is required per iteration.

The safe-step procedure is de�ned as follows.

safe(z; �; y; t; 
; �):
choose ~� 2 [��; 12 ], �

0 2 [��; 1];
solve (12) to �nd (�z;��;�y);
choose � to be the �rst element in the sequence �0; ��0; �2�0; : : :,

such that the following conditions are satis�ed:
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�i(�)yi(�) � 
 �(�);(16a)

krf (z(�); �(�))k � ��(�);(16b)

krg(z(�); y(�))k � ��(�);(16c)

�(�) � [1� ��(1� ~�)]�(16d)

return (z(�); �(�); y(�)).

A nonzero centering term is used, allowing us to move a nontrivial distance along
the search direction while staying in the set de�ned by

f(z; �; y) j�iyi � 
�g:(17)

The second and third acceptance conditions (16b), (16c) ensure that the infeasibility
remains bounded by a multiple of the complementarity. The infeasibility is \squeezed"
to zero at least as rapidly as the complementarity measure. Similar conditions are
enforced in infeasible-interior-point algorithms for linear complementarity and linear
programming; see, for example, Wright [14]. The fourth condition (16d) is a \su�cient
decrease" condition of the kind often found in algorithms for nonlinear optimization.
Its purpose is to ensure that the decrease in objective function (in this case, �) achieves
at least a fraction � of the decrease promised by the linearized model (12).

Fast-step calculations are a little more complicated. Since they use no centering
(~� = 0), it may not be possible to satisfy the acceptance criteria (16) regardless of
how small we choose �. Hence, these criteria must be relaxed but not abandoned.
The amount of relaxation is large enough to allow near-unit steps to be taken near the
solution, but small enough to keep the iterates inside a neighborhood of the central
path. These opposing considerations are balanced by making the amount of relaxation
geometric in the fast step counter t.

fast(z; �; y; t; 
; �):
solve (12) with ~� = 0 to �nd (�z;��;�y);

set ~
 = 
min + �
t+1(
max � 
min); set ~� = (1 + �
t+1)�;
de�ne

�0 = 1�
��̂

�
t
;(18)

if �0 � 0 return(z; �; y);
choose � to be the �rst element in the sequence �0; ��0; �2�0; : : :,
such that the following conditions are satis�ed:

�i(�)yi(�) � ~
 �(�);(19a)

krf (z(�); �(�))k � ~��(�);(19b)

krg(z(�); y(�))k � ~��(�);(19c)

return (z(�); �(�); y(�)).

Note that a su�cient decrease condition is not needed in (19); the acceptance
test �k+1 � ��k in the main algorithm performs this check.

Before embarking on the convergence analysis, we note that the following condi-
tions are satis�ed by every iterate (zk; �k; yk):

�ki y
k
i � 
k�k � 
min�k; i = 1; 2; : : : ; P;(20a)

max(krkfk; kr
k
gk) � �k�k:(20b)
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Note too that �k is bounded. In fact,

�min � �k = �min

tkY
j=1

(1 + �
j ) � �min

1Y
j=1

(1 + (
1

2
)j) � �min exp(3=2) = �max:(21)

3. Convergence. In this section we �rst prove global convergence and then
discuss superlinear local convergence.

3.1. Global Convergence. We prove here a global convergence result: either
the sequence of iterates terminates �nitely at a solution, or all limit points are solutions
of (3). To prove this result, we use a simple technique due to Polak [9, Chapter 1].

We start by formalizing our assumptions on � and g.
Assumption 1. � : IRN ! IR

N is C1 and monotone; and each component function
gi of g : IR

N ! IR
P is C2 and convex.

it follows immediately from this de�nition and (6) that�
Dzf DgT

�Dg 0

�
is positive semide�nite for each (z; �) 2 IR

N � IR
P
+.

Recall that S is the solution set for (3). All iterates of the algorithm are con�ned
to the set 
, de�ned by


 = f(z; �; y) j (�; y) � 0; krf (z; �)k � �max�;(22)

krg(z; y)k � �max�; �iyi � 
min�; i = 1; 2; : : : ; Pg :

We also de�ne


++ = 
 \ (IRN � IR
P
++ � IR

P
++)

where IRP++ is the strictly positive orthant in IRP and � = �Ty=P as before. If (z; �; y) 2

n
++, we must have �iyi = 0 for some index i and therefore � = 0 from the last
condition in (22). Hence, (z; �; y) is a solution vector, so we can write


 = 
++ [ S; 
++ \ S = ;:

The result that (zk; �k; yk) 2 
 for all k follows from (20) and (21).
By monotonicity, we know that the submatrix Dzf in the Jacobian is positive

semide�nite. To ensure that the Newton-like equations (12) have a unique solution,
we impose a slightly stronger condition involving two-sided projections.

The two-sided projection of a square matrixM 2 IR
N�N onto the kernel of another

matrixG 2 IR
P�N is any matrix ZTMZ where the columns of Z form a basis of kerG.

The two-sided projection of M onto kerG is positive de�nite if and only if dTMd > 0
for each d 2 kerG with d 6= 0.

Assumption 2. The two-sided projection of the matrix

Dzf(z; �) = D�(z) +
PX
i=1

�iD
2gi(z)

onto kerDg(z) is positive de�nite for all z 2 IR
N and � 2 IR

P
++.
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Note that this assumption is vacuously satis�ed when the constraints g(z) � 0
include nonnegativity, z 2 IR

n
+. In particular, it holds for the case g(z) = �z|the

nonlinear complementarity problem.
To verify that Assumptions 1 and 2 imply existence and uniqueness of the solution

to (12), note that �y and �� can be eliminated from this system to obtain a reduced
system in �z with coe�cient matrix

Dzf + (Dg)T�Y �1(Dg):(23)

Suppose that dT [Dzf+(Dg)T�Y �1(Dg)]d = 0 for some vector d. We have dTDzfd �
0 from Assumption 1 and, from strict positivity of � and y, we also have

dT [(Dg)T�Y �1(Dg)]d =
X
i

[(Dgi)d]
2�i=yi � 0:

Hence, dT (Dzf)d = 0 and (Dg)d = 0. By Assumption 2, it follows from these relations
that d = 0, so that the matrix in (23) is positive de�nite and therefore (12) has a
unique solution, as required.

Assumptions 1 and 2 imply that the algorithm takes a nontrivial step �k along the
computed search direction|and therefore makes a nontrivial amount of progress|at
every iteration. The �rst result indicates that this claim is true in the case of safe
steps.

Lemma 3.1. Suppose that Assumptions 1 and 2 hold. Let (ẑ; �̂; ŷ) 2 
nS. Then

there are scalars �̂ > 0 and �̂ 2 (0; 1] such that if the algorithm takes a safe step from
any point (z; �; y) satisfying

(z; �; y) 2 B̂
4
= (ẑ; �̂; ŷ) + �̂IB;(24)

the calculated step length � will satisfy � � �̂.
Proof. We de�ne �̂ by

�̂ =
1

2
min

i=1;2;:::;P

�
min(�̂i; ŷi)

�
> 0:

For (z; �; y) 2 B̂, we then have

�iyi � (�̂i � �̂)(ŷi � �̂) � �̂
2; � = �Ty=P � �̂2:(25)

Note from (20a) that, if the safe step routine is called at the point (z; �; y), then

�iyi � 
�; i = 1; 2; : : :; P;

for the value of 
 that is passed to the routine safe.
Since � > 0 and y > 0 for all (z; �; y) 2 B̂, the coe�cient matrix in (12) is

nonsingular and continuous in an open set containing B̂. The right-hand side in (12)
is also continuous with respect to (z; �; y) and ~�. Hence, there is a constant C6 > 0
such that

k(�z;��;�y)k � C6(26)

for all (z; �; y) 2 B̂, ~� 2 [��; 12 ].
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De�ne �̂(1) = �̂=(2C6). We then have for all � 2 [0; �̂(1)] that

�i + ���i � �̂i � �̂ �
�̂

2C6
j��ij � 2�̂ � �̂ �

1

2
�̂ > 0;

and similarly for yi + ��yi.
Now de�ne

�̂(2) = min

 
�̂(1);

��(1� 
max)�̂
2

2C2
6

!
:

We now show that the �rst acceptance criterion (16a) is satis�ed for all � 2 [0; �̂(2)].
From the last block row in (12), we have

�i(�)yi(�) = �iyi � ��iyi + �~��+ �2��i�yi

� 
�(1 � �) + �~��� �2C2
6 ;

since �iyi � 
. Using (12) again, we also have

�(�)Ty(�) = �T y � �(1� ~�)�Ty + �2��T�y

� �T y � �(1� ~�)�Ty + �2C2
6 :(27)

By combining these two estimates, we �nd that (16a) is satis�ed if


�(1 � �) + �~��� �2C2
6 � 
�(1 � �) + �
~�� + �2
C2

6=P;

which, in turn, is satis�ed if

~��(1� 
)� � 2�2C2
6 :

Since � � �̂2, 
 2 (
min ; 
max], and ~� � ��, this last condition holds for all � 2 [0; �̂(2)],
so the condition (16a) is satis�ed for � in this range.

We now prove that the fourth condition (16d) holds for all � 2 [0; �̂(3)], where

�̂(3) = min

 
�̂(2); P (1� �)

�̂2

2C2
6

!
:

For � in this range, we have from � � �̂2, in (25), and ~� � 1
2 that

�2C2
6 � �P (1� �)

�̂2

2
� �(1� �)(1� ~�)�T y:

Hence, from (27), we have

�(�)T y(�) � �T y � �(1� ~�)�Ty + �(1� �)(1� ~�)�T y � [1� ��(1� ~�)]�Ty;

as required.
We turn next to the second condition (16b). From Taylor's theorem and (12), we

have

f(z(�); �(�)) = f(z; �) + �
�
Dzf D�f

� � �z
��

�
+�

Z 1

0

[Df(z + ���z; �+ ����)�Df(z; �)]

�
�z
��

�
d�

= (1� �)f(z; �) + ��rf ;(28)
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where we have de�ned

�rf =

Z 1

0

[Df(z + ���z; �+ ����)�Df(z; �)]

�
�z
��

�
d�:(29)

By taking norms, we obtain

k�rfk � max
�2(0;1)

kDf(z + ���z; �+ ����)�Df(z; �)k k(�z;��)k:(30)

Therefore, by continuity of Df (Assumption 1) and the bound (26), there is a scalar
�̂(4) 2 (0; �̂(3)] such that

� 2 [0; �̂(4)] ) k�rfk �
1

2
���min �̂

2;(31)

for all (z; �; y) 2 B̂ from which a safe step is calculated. By reducing �̂(4), if necessary,
we can also assert that

� 2 [0; �̂(4)] ) �C2
6 �

1

2
��P �̂2:(32)

By taking norms in (28) and using (20b), we �nd that

kf(z(�); �(�))k � (1� �)kf(z; �)k+ �k�rfk

� (1� �)�� + �k�rfk:(33)

Meanwhile, we have by a slight change to (27) (bounding below instead of above) that

�(�)T y(�) � �T y(1 � �+ �~�)� �2C2
6 :

Trivial rearrangement of this expression gives

(1� �)� � �(�)� �~��+ (�2C2
6=P ):

By substituting into (33), we obtain

kf(z(�); �(�))k � ��(�) � ��~��+ ��2C2
6=P + �k�rfk

= ��(�) � �
�
�~��� ��C2

6=P � k�rfk
�
:(34)

Since ~� � �� and � � �min, we have from (25), (31), and (32) that

k�rfk �
1

2
~���; ��C2

6=P �
1

2
~���;

for all � 2 [0; �̂(4)]. Hence, the bracketed term in (34) is nonnegative, and we have

krf (z(�); �(�))k = kf(z(�); �(�))k � ��(�);

for all � 2 [0; �̂(4)], as required.
By an almost identical argument, we can show that the third condition (16c)

holds for � 2 [0; �̂(4)], though we may have to choose �̂(4) smaller (but still positive).
We have shown that the criteria (16) are satis�ed for all � 2 [0; �̂(4)]. Hence, the

step length selected by safe will be at least as long as the �rst value of � below �̂(4)

that is tried by the Armijo backtracking strategy. We deduce that

� � �̂
4
= min(��; ��̂(4));
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and our proof is complete.
The global convergence result and its proof are similar to Theorem 3.3 of Wright

and Ralph [18].
Theorem 3.2. Suppose that Assumptions 1 and 2 hold. Then either
(A) (zk; �k; yk) 2 S for some k <1, or
(B) all limit points of f(zk; �k; yk)g belong to S.
Proof. Suppose for contradiction that the sequence f(zk; �k; yk)g is in�nite, with

a limit point (ẑ; �̂; ŷ) that does not belong to S. Since the sequence is contained

entirely in the closed set 
, we must have (ẑ; �̂; ŷ) 2 
nS. We must have (�̂; ŷ) > 0,

since otherwise it would follow from the de�nition of 
 that �̂ = �̂T ŷ=P = 0 and

hence (ẑ; �̂; ŷ) 2 S. Hence, �̂ > 0.
Let K be an in�nite subsequence such that

f(zk; �k; yk)gk2K ! (ẑ; �̂; ŷ):

Since f�kg is monotone decreasing, we have �k � �̂ for all k. If a safe step is taken
from the k-th iterate, for some k 2 K, we have from (16d) and Lemma 3.1 that the
(k + 1)-th iterate must satisfy

�k+1 � [1� �k�(1� �k)]�k � �k �
�̂�

2
�̂:(35)

If a fast step is taken, we have from the acceptance test in the main algorithm that

�k+1 � ��k = �k � (1 � �)�k � �k �
(1� �)

2
�̂;(36)

The estimates (35) and (36) show that, whatever kind of step is taken, the reduction
in � from iterate k is at least a small constant. Therefore, since f�kg is monotone
decreasing and K is in�nite, we have �k # �1. This is a contradiction, since �k is
bounded below by zero, so the proof is complete.

3.2. Superlinear Local Convergence. By making various assumptions about
the functions � and g and about the solution set S (see the next section), we can
show that the algorithm converges superlinearly. The sequence of duality measures
f�kg converges with Q-order at least 1+ �̂ , where �̂ 2 (0; 1) is the parameter used to
choose the initial step length for the fast step in (18).

We state our main result here. The remainder of the paper lays the groundwork
for its proof, which is given at the end.

Theorem 3.3. Suppose that Assumptions 1, 2, 3, 4, 5, 6, and 7 are satis�ed
and that the sequence f(zk; �k; yk)g is in�nite, with a limit point (z�; ��; y�) (in the
solution set S). Then the algorithm eventually always takes fast steps, and

(i) the sequence f�kg converges superlinearly to zero with Q-order at least 1+ �̂ ,
and

(ii) the sequence f(zk; �k; yk)g converges superlinearly to (z�; ��; y�) with R-order
at least 1 + �̂ .

We mention that a limit point (z�; ��; y�), as needed above, exists under the extra
assumption of boundedness of the feasible region C; see Section 6. Thus a corollary of
Theorems 3.2 and 3.3 is that if C is bounded and Assumptions 1{7 hold, then global
and superlinear local convergence are both guaranteed.

We also remark that the monotonicity conditions of Assumption 1 are proba-
bly stronger than necessary for convergence. Regarding global convergence, given
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the work of Wang, Monteiro and Pang [12, Theorem 4], it seems likely that these
monotonicity conditions can be relaxed somewhat. Regarding local convergence, it is
conceivable, given a sequence of iterates f(zk; �k)g with a limit point (z�; ��), that
superlinear convergence requires fewer hypotheses, perhaps only the Mangasarian-
Fromovitz CQ in place of Assumption 3, and Assumptions 4{7.

4. Assumptions for Superlinear Convergence. We have already shown in
Section 3.1 that Assumptions 1 and 2 are enough to guarantee global convergence of
the kind described in Theorem 3.2. In the remainder of the paper, we focus on case
(B) of this theorem, in which the iterate sequence has a limit point in the solution
set S. In this section, we state and describe the assumptions that will be used in the
proof of Theorem 3.3.

Assumption 3 is the Slater constraint quali�cation.
Assumption 3. There is a vector �z 2 C such that g(�z) < 0.
Assumption 4 concerns strict complementarity for at least one member of the

solution set.
Assumption 4. There is a strictly complementary solution (z�; ��; y�), that is,

(z�; ��; y�) satis�es (3) with �� + y� > 0.
The next assumption concerns smoothness of � and Dg around the vector z�

de�ned by Assumption 4.
Assumption 5. The matrix-valued functions D� and D2gi, i = 1; 2; : : : ; P are

Lipschitz continuous in a neighborhood of z�.
For the next assumption, we recall the de�nition of the index sets B and N from

Section 1. All strictly complementary solutions (z�; ��; y�) have ��B > 0, ��N = 0,
y�B = 0, and y�N > 0. This assumption concerns invertibility of the projection of
Dzf(z

� ; �) onto the null space of the active constraints, which are the components
gi(z) for i 2 B.

Assumption 6. Let Sz;� and B be de�ned as in Section 1, and z� be as de�ned

in Assumption 4. Let S�� be the set of � 2 IR
P such that (z�; �) 2 Sz;�. Then for each

member � of S��, the two-sided projection of Dzf(z� ; �) onto ker(Dg�B) is invertible;
that is, for any basis Z of ker(Dg�B), the matrix ZTDzf(z

�; �)Z is invertible.
This assumption looks similar to Assumption 2, but it applies to a di�erent set

of points (z; �) and also refers to a di�erent subspace|that of the active constraint
Jacobian, not of the entire constraint Jacobian.

Lemma 4.1. Suppose that Assumptions 1, 2, 3, and 4 are satis�ed. Then the set
of multipliers S�� de�ned in Assumption 6 is polyhedral, convex, and compact, hence
is equal to the convex hull of its extreme points.

Proof. By de�nition, S�� can be written

f� 2 IR
P
+ : �(z�) +Dg(z�)T� = 0; g(z�)T� = 0g;

which is clearly a polyhedral, convex set. Boundedness follows from Gauvin [2] if we
can show that the Mangasarian-Fromovitz constraint quali�cation holds at z�. Given
the Slater point (�z; ��) from Assumption 3, we have for i 2 B that

gi(�z) � gi(z
�) +Dgi(z

�)(�z � z�) = Dgi(z
�)(z � z�);

so that Dgi(z
�)(�z � z�) < 0 for all i 2 B, as required.

We return to our earlier claim that the z� solution component is uniquely deter-
mined.
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Lemma 4.2. If Assumptions 1, 3, 4, and 6 hold, then

Sz;� = fz�g � S��;

where S�� � IR
P
+ is the set of multipliers referred to in Assumption 6.

Proof. We �rst demonstrate local uniqueness of the �rst solution component z�;
that is, for (z; �) in Sz;� near (z�; ��), we have z = z�. Assume for contradiction that
f(zk; �k)g � Sz;� is a sequence converging to (z�; ��), where �� 2 S�� and zk 6= z�

for each k. Let �k = kzk � z�k > 0, and assume without loss of generality that
(zk � z�)=�k ! dz 6= 0. Let Z be a basis of kerDgB(z

�), so that for any optimal
multiplier � (i.e. (z; �) 2 Sz;� for some z), we have

ZTDg(z�)T� = ZTDgB(z
�)T�B = 0;

where the �rst equality uses the fact that �N = 0 if � is an optimal multiplier.
Hence ZT f(z�; ��) = ZTf(z� ; �k). Using this equality together with 0 = f(zk; �k) =
f(z�; ��), we obtain

0 = ZT f(z
k; �k) � f(z�; �k)

�k
! ZTDzf(z

�; ��)dz:(37)

Similarly, since 0 = gB(z
k) = gB(z

�), we have 0 = DgB(z
�) dz, thus dz = Zu for some

vector u. Substituting Zu for dz in (37) gives

0 = (ZTDzf(z
�; ��)Z)u;

so that u = 0 by invertibility of the two-sided projection. Therefore, we have dz = 0,
a contradiction.

As noted in Section 1, convexity of Sz;� follows from monotonicity of f and [3,
Proposition 3.1]. To shows that z� is the �rst component of any solution, let (z; �)
be an arbitrary element of Sz;�. By convexity, we also have

(1� �)(z�; ��) + �(z; �) 2 Sz;�

for all � 2 [0; 1]. Since (1� �)z� + �z ! z� as � # 0, it follows from local uniqueness
that z = z�.

Note Lemmas 4.1 and 4.2 together imply that Sz;� is compact. This fact, together
with Assumption 5 and the observation that Dzf(z; �) is linear in �, ensures that
Dzf(z; �) and Dg(z) are Lipschitz continuous in a neighborhood of Sz;�.

Finally, we state the constant rank assumption. See Pang and Ralph [8] for some
discussion on this and related conditions.

Assumption 7. The constant rank constraint quali�cation (CRCQ) holds for
the system g(z) � 0 at z�: For some neighborhood U of z�, the set of matrices
fDgB(z)T j z 2 Ug has constant column rank.

Clearly the CRCQ holds if g is a�ne. It also holds if (Dg�B)
T has full column

rank (that is, if the linear independence constraint quali�cation holds).

5. Proof of the Superlinear Convergence Result. In this section, we prove
the main result, Theorem 3.3. Most of the e�ort is spent in estimating the size of
fast steps (�z;��;�y) that are calculated from points (z; �; y) 2 
 close to the limit
point (�z; ��; �y). The ultimate result, Corollary 5.13, shows that the estimate

k(�z;��;�y)k � C0�(38)
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holds for all steps of this type. In Subsection 5.6, this estimate is used together with
Lipschitz continuity to complete the proof of Theorem 3.3.

The task of proving the estimate (38) turns out to be highly technical, so we have
organized our argument into subsections and provided considerable motivating dis-
cussion. Readers should be able to follow the outline of our argument without delving
into the details. The di�culty is due entirely to our wish to use weaker conditions
than the usual nondegeneracy conditions. When the latter hold, the condition (38)
follows from a simple application of the implicit function theorem.

Most results in this section follow from the same set of assumptions, which we
de�ne here to avoid repetition:

Standing Assumptions: These are the assumptions of Theorem 3.3;
namely, Assumptions 1, 2, 3, 4, 5, 6, and 7, together with an as-
sumption that the sequence has a limit point but does not terminate
�nitely.

Assumption 7 is needed only from Subsection 5.4 onwards, but we include it among
the standing assumptions for simplicity.

In Subsection 5.1, we de�ne a partition of the vector (�z;��;�y) into two com-
ponents (t; u; v) and (t0; u0; v0). Subsection 5.2 gives a relatively easy part of the proof:
showing that the components ��N and �yB are O(�k). Subsections 5.3 and 5.4 show
that (t0; u0; v0) and (uB; vN ), respectively, are also O(�). All these results, taken to-
gether, establish k(��;�y)k = O(�). We summarize this result in Subsection 5.5 and
deduce that the remaining step component k�zk is also O(�).

Throughout the section, we assume that the sequence (zk; �k; yk) has a limit point

that we denote by (ẑ; �̂; ŷ). Of course, we know from Theorem 3.2 that (ẑ; �̂; ŷ) 2 S.
When Assumption 4 and the result of Lemma 4.2 hold, all solutions have the vector
z� as their z component. In this case we have ẑ = z�, so we sometimes write the limit
point as (z�; �̂; y�), where y� = �g(z�).

Another quantity that appears repeatedly in the remaining analysis of this section
is the restricted neighborhood S(�) of the limit point, de�ned by

S(�)
4
= f(z; �; y) 2 
 j k(z; �; y)� (z�; �̂; y�)k � �g:(39)

5.1. Computation of Fast Steps. Recall that each fast step is obtained by
solving (12) with ~� = 0; that is,24 Dzf (Dg)T 0

�Dg 0 �I
0 Y �

3524 �z
��
�y

35 =

24 rf
rg
��Y e

35 :(40)

For convenience, we restate the following notational de�nitions from Section 2:

rf = �f(z; �); rg = y + g(z); � = �Ty=P:

We are particularly interested in the fast step calculation when the current it-
erate (z; �; y) is close to the limit point (z�; �̂; y�). To establish bounds on the step
(�z;��;�y) in this situation, we split it into two pieces. The splitting is de�ned
implicitly in terms of the following minimization problem:

(41)

(z�; ��)

2 arg min
(z�;�)2Sz;�





� f(z�; �)� [f(z; �) +Dzf(z; �)(z
� � z) +Dg(z)T (� � �)]

g(z�) � [g(z) +Dg(z)(z� � z)]

�



 :



INTERIOR-POINT METHOD FOR VARIATIONAL INEQUALITIES 16

Existence of the vector (z�; ��) follows from compactness of Sz;�. We use (z�; ��) to
de�ne the vectors �f , �g, �f , �g as follows:

�f = Dzf(z; �)(z
� � z) +Dg(z)T (�� � �);(42a)

�g = y �Dg(z)(z� � z) + g(z�)(42b)

�f = �f(z; �) �Dzf(z; �)(z
� � z)�Dg(z)T (�� � �);(42c)

�g = g(z) � g(z�) +Dg(z)(z� � z):(42d)

The right-hand side of (40) can now be partitioned as24 rf
rg
��Y e

35 =

24 �f
�g
�Y �e

35+
24 �f
�g
0

35 ;
and the splitting (�z;��;�y) = (t; u; v) + (t0; u0; v0) of the right-hand side follows
accordingly: 24 Dzf (Dg)T 0

�Dg 0 �I
0 Y �

3524 t
u
v

35 =

24 �f
�g
��Y e

35 ;(43)

24 Dzf (Dg)T 0
�Dg 0 �I
0 Y �

3524 t0

u0

v0

35 =

24 �f
�g
0

35 :(44)

Because of Assumption 2, the systems (40), (43), and (44) all have unique solutions.

5.2. Bounds for ��N and �yB. It is relatively easy to obtain size estimates
for about ��N and �yB, which together make up half the components of (��;�y).
We start by deriving some upper and lower bounds on the components of � and y for
(z; �; y) in a neighborhood of the form (39), which will prove useful throughout the
remainder of this section.

Lemma 5.1. Suppose that the standing assumptions hold. Then there is a con-
stant C4 such that the following bounds hold for all (z; �; y) 2 S(1):

�i � C4� (i 2 N ); yi � C4� (i 2 B);(45a)

�i � 
min=C4 (i 2 B); yi � 
min=C4 (i 2 N );(45b)

yi � 
min�=C4 (i 2 B); �i � 
min�=C4 (i 2 N ):(45c)

Proof. Let (z�; ��; y�) denote the strictly complementary solution from Assump-
tion 4. By monotonicity of the mapping (5), (10), and the fact that g(z�) = �y�, we
have

0 �

�
f(z; �) � f(z�; ��)
�g(z) + g(z�)

�T �
z � z�

� � ��

�
=

�
�rf

y � rg � y�

�T �
z � z�

�� ��

�
:

By rearranging this expression, we have from (��)T y� = 0, (20b), and (21) that

(��)T y + (y�)T� � �Ty + krfkkz � z
�k+ krgkk�� �

�k

� P�+ �max� (kzk+ kz
�k+ k�k+ k��k) :
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Since (z; �; y) 2 S(1), we have

k(z; �)k � k(z�; �̂)k+ k(z� � z; �̂� �)k � k(z�; �̂)k+ 1;(46)

so we can bound the term in parentheses by a constant, giving

(��)Ty + (y�)T� � �C4�;

for some positive constant �C4. Since ��N = 0 and y�B = 0, this inequality implies thatX
i2B

��i yi +
X
i2N

y�i �i � �C4�:

Since (��B; y
�
N ) > 0 and (�; y) > 0, each term in the summations is positive, so we

have

�i �
1

y�i
�C4�; i 2 N ; yi �

1

��i
�C4�; i 2 B:

From these bounds, we can de�ne C4 is an obvious way to satisfy (45a).
For any i 2 B, we have from (22) and (45a) that

�i �

min�

yi
�

min�

C4�
=

min

C4
;

giving the �rst part of (45b). The second part is proved similarly.
For i 2 B, we have from (22) and our choice of (z; �; y) 2 S(1) that

yi �

min�

�i
�

min�

�̂i + 1
:

A similar lower bound can be proved for �i, i 2 N . Hence (45c) holds, for a suitable
rede�nition of C4.

Lemma 5.2. Suppose that the standing assumptions are satis�ed. Then there are
constants �1 2 (0; 1] and C9 > 0 such that for all (z; �; y) 2 
(�1), the solution of the
linear system 24 Dzf (Dg)T 0

�Dg 0 �I
0 Y �

35
264 c�zc��c�y

375 =

24 rf
rg
0

35(47)

satis�es

kc�zk � C9

�
�+ kc��Bk� :

Proof. Because �1 � 1, the estimates (45) apply for points (z; �; y) 2 S(�1). Note
too that these points also satisfy � = O(�1), since

P� = �T y = �TByB + �TN yN � (k�̂Bk+ �1)�1 + �1(kyN k+ �1) = O(�1):

By eliminating c�y and d��N from the system (47), we obtain�
(Dzf) + (DgN )T�N (YN )

�1DgN (DgB)
T

�DgB (�B)
�1YB

� " c�zd��B
#

=

�
rf � (DgN )T�N (YN )�1(rg)N

(rg)B

�
:(48)
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From Lemma 5.1, we have k�N (YN )�1k = O(�) and k��1B YBk = O(�). Because of
Lipschitz continuity (Assumption 5) and (z; �; y) 2 S(�1), we have

Dg(z) �Dg(z�) = O(kz � z�k) = O(�1)

Dzf(z; �) �Dzf(z
�; �̂) = O(kz � z�k) + O(k�� �̂k) = O(�1):

By perturbing the coe�cient matrix in (48) and substituting these estimates, along
with � = O(�1), we obtain�

Dzf(z�; �̂) DgB(z�)T

�DgB(z�) 0

� " c�zd��B
#

=

�
rf � (DgN )T�N (YN )�1(rg)N

(rg)B

�
+ O(�1)

" c�zd��B
#
:(49)

By partitioning c�z into its components in kerDgB(z�) and ranDgB(z�)T , we have

from Assumption 6 that c�z is bounded in norm by the right-hand side of (49). Hence,
since krfk and krgk are both O(�), and DgN is bounded on bounded sets, we can
write

kc�zk � �C9

�
� + �1(kc�zk+ kd��Bk)� ;

for some constant �C9. By choosing �1 small enough that

�C9�1 �
1

2
;

we can combine terms in kc�zk on the left-hand side and divide to obtain

kc�zk � 2 �C9

�
�+ �1kd��Bk� � 2 �C9�+ kd��Bk;

proving the result.
In subsequent results, we often will refer to the positive de�nite diagonal matrix

Dk de�ned by

D = ��1=2Y 1=2:(50)

We can obtain bounds on kDk and kD�1k for points (z; �; y) 2 S(1) by applying
Lemma 5.1. For kD�1k, we have

kD�1k = max
i=1;:::;n

�
1=2
i

y
1=2
i

�
(�̂i + 1)1=2

(
min min(�; 1)=C4)1=2
� C7�

�1=2;(51)

for some constant C7. Similar logic shows that

kDk � C7�
�1=2;(52)

after a possible rede�nition of C7.
The next result is a bound on the scaled vectors D�� and D�1�y.
Lemma 5.3. Suppose that the standing assumptions hold. Then for the con-

stant �1 de�ned in Lemma 5.2, there is a constant C3 > 0 such that the solution
(�z;��;�y) of (40) satis�es

kD��k � C3�
1=2; kD�1�yk � C3�

1=2;(53)
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for all (z; �; y) 2 S(�1).
Proof. We break the solution into two pieces and prove that the required bounds

hold for each part. We write

(�z;��;�y) = (�z;��;�y) + (c�z; c��; c�y);
where 24 Dzf DgT 0

�Dg 0 �I
0 Y �

3524 �z
��
�y

35 =

24 0
0

�Y �e

35 ;(54a)

24 Dzf DgT 0
�Dg 0 �I
0 Y �

35
264 c�zc��c�y

375 =

24 rf
rg
0

35 :(54b)

For the �rst component, we multiply the last block row by the diagonal matrix
(Y �)�1=2 to obtain

D�� +D�1�y = �(Y �)1=2e:(55)

From (54a), we also have

��
T
�y = ���

T
(Dg)�z = �z

T
(Dzf)�z � 0;

so by taking inner products in (55), we obtain

kD��k2+kD�1�yk2 � kD��k2+�z
T
(Dzf)�z+kD

�1�yk2 = k(Y �)1=2ek2 = P�:

Hence, we have

kD��k � P 1=2�1=2; kD�1�yk � P 1=2�1=2:(56)

For the second component of the solution, we obtain from the last block row in
(54b) that

Dc�� = �D�1c�y ) kDc��k = kD�1c�yk;(57)

and so we seek a bound for kDc��k. Using (54b) again, we obtain
�Dgc�z � c�y = rg ) �Dgc�z +D2c�� = rg:

By taking inner products with c��, we obtain
kDc��k2 = c��T rg + c��T (Dg)c�z:

From the �rst block row in (54b), we have by positive semide�niteness of Dzf(z; �)
that

c��T (Dg)c�z = (rf � (Dzf)c�z)T c�z � rTf c�z:
By combining the last two expressions, we obtain

kDc��k2 � c��T rg + rTf
c�z � kc��kkrgk+ krfkkc�zk:(58)
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Because of (20b) and Lemma 5.2, we have

krfk � �max�; krgk � �max�; kc�zk � C9(�+ kc��k):
It follows from (51) that

kc��k � kD�1kkDc��k � C7�
�1=2kDc��k:

By substituting all these estimates into the right-hand side of (58), we �nd that there
is a constant C10 such that

kDc��k2 � C10

�
�1=2kDc��k+ �2

�
:

It follows immediately from this expression and (57) that

kDc��k � �C3�
1=2; kD�1c�yk � �C3�

1=2;

for some constant �C3. The result of the lemma is obtained by combining this estimate
with (56).

Bounds on half the components of (��;�y) follow easily.
Theorem 5.4. Suppose that the standing assumptions hold. Then for the con-

stant �1 de�ned in Lemma 5.2, there is a positive constant C5 such that the solution
(�z;��;�y) of (40) satis�es

k��Nk � C5�; k�yBk � C5�;(59)

for all (z; �; y) 2 S(�1).
Proof. From the de�nition (50) and the bounds (53), we have that�����

�
yi
�i

�1=2

��i

����� � kD��k � C3�
1=2:

Hence from (45a) and (45b), we have for i 2 N that

j��ij �

�
�i
yi

�1=2

C3�
1=2 �

C4�
1=2



1=2
min

C3�
1=2;

which proves that k��N k � C5�k for an obvious de�nition of C5. The bound on
k�yBk is derived in the same way.

5.3. A Bound for (t0; u0; v0). In this subsection we �nd bounds for the com-
ponents (t0; u0; v0) de�ned by (44). The di�cult part of the analysis appears in the
following two lemmas, in which we estimate the size of (�f ; �g) in (42c),(42d).

Under our standing assumptions, we can de�ne the following set:

S1z;� = f(z; �) 2 Sz;� j�i � 
min=C4; i 2 B; gi(z) � �
min=C4; i 2 Ng;(60)

where C4 is de�ned in Lemma 5.1. Because of (45b), all limit points of the sequence

f(zk; �k)g lie in S1z;�; in particular, (z
�; �̂) 2 S1z;�. Obviously, (z; �;�g(z)) is a strictly

complementary solution of (3) whenever (z; �) 2 S1z;�.
Our �rst result, like the results in the preceding subsections, considers points

(z; �; y) 2 
 near the solution set S and shows that distSz;� (z; �) can be bounded in
terms of the amount by which (z; �;�g(z)) violates feasibility and complementarity.
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Lemma 5.5. Suppose that the standing assumptions hold. Then there exist con-
stants ~L and �2 2 (0; �1] such that the following bound holds for all points (z; �) 2
IR
N � IR

P
+ with distS1

z;�
(z; �) � �2:

distSz;�(z; �) � ~Lk (f(z; �); g(z)+; �
T g(z)) k:(61)

Proof. By Lemmas 4.1 and 4.2, we know that Sz;� is compact. Since S1z;� � Sz;�
and S1z;� is closed, S1z;� too is compact.

We prove the result by contradiction. If the claim is false, we can choose a
sequence f(�kz ; �

k
�)g � IR

N � IR
P
+ with the properties

distS1
z;�

(�kz ; �
k
�) # 0;(62)

and

k(�kz ; �
k
�)� (z�; ��k)k � kk (f(�kz ; �

k
�); g(�

k
z )+; (�

k
�)

T g(�kz )) k;(63)

where (z�; ��k) is the nearest point in Sz;� to �k for each k. (Note that (z�; ��k)
exists, by compactness of Sz;�, and that the z� component is uniquely de�ned.) By
compactness of S1z;� and (62), we can take subsequences if necessary and assume

that both f(�kz ; �
k
�)g and f(z�; ��k)g converge to (z�; ��) 2 S1z;�. By de�ning �k =

k(�kz ; �
k
�)� (z�; ��k)k and taking a further subsequence, we can assume that there is a

vector (dz; d�) 2 (IR
N � IR

P
+) n f0g such that

(�kz ; �
k
�) � (z�; ��k)

�k
! (dz; d�):

(In fact, (dz; d�) is a unit vector.) Since ��kN = 0 and ��kB > 0 for all k su�ciently
large, the solution (z�; ��k) is strictly complementary for all k su�ciently large.

The following analysis is devoted to showing that (dz; d�) = 0, a contradiction
that proves the result. First, we show that (dz; d�) is in the normal cone to Sz;� at
(z�; ��), namely, �

dz
d�

�T �
z� � z�

�� ��

�
� 0 for all (z�; �) 2 Sz;�:(64)

Second, we show that (dz; d�) is in the tangent cone to Sz;� at (z�; ��), indeed that

(z�; ��) + � (dz; d�) 2 Sz;� for small � > 0.(65)

Together, these two results imply that k(dz; d�)k = 0, as required.
To show (64), we note that, since (z�; ��k) is the projection of (�kz ; �

k
�) onto Sz;�,

we have �
�kz � z

�

�k� �
��k

�T �
z� � z�

�� ��k

�
� 0; for all (z�; �) 2 Sz;�.

We obtain (64) by dividing this expression by �k and taking limits.
The proof of (65) is longer. By the smoothness properties of f , and the fact that

f(z�; ��k) = 0, we have

f(�kz ; �
k
�)

�k
=
f(�kz ; �

k
�) � f(z

�; ��k)

�k
! Dzf(z

�; ��)dz +Dg(z�)Td�:(66)
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Taking i 2 B, we have gi(z�) = 0 and so

gi(�kz )+
�k

=

�
gi(�kz )� gi(z

�)

�k

�
+

! [Dgi(z
�)dz]+ ; for all i 2 B.(67)

For the nonbasic components, we have

gi(z
�) < 0 ) gi(�

k
z )+ = 0; for all i 2 N ;(68)

and all k su�ciently large. Also, we have

(�k�)
Tg(�kz )

�k
=

(�k�)
Tg(�kz ) � (��k)Tg(z�)

�k
! g(z�)Td� + ��TDg(z�)dz:(69)

By combining (66), (67), (68), and (69) and the property (63), we obtain

0 = lim
k

k(f(�kz ; �
k
�); g(�

k
z )+; (�

k
�)

T g(�kz ))k

�k

= k(Dzf(z
�; ��)dz +Dg(z�)Td�; [DgB(z

�)dz]+; g(z
�)Td� + ��TDg(z�)dz)k:

It follows immediately that

Dzf(z
�; ��)dz +Dg(z�)Td� = 0;(70a)

DgB(z
�)dz � 0;(70b)

g(z�)Td� + ��TDg(z�)dz = 0:(70c)

Since gB(z�) = 0 and ��N = 0, we can rewrite (70c) asX
i2N

gi(z
�)(d�)i +

X
i2B

��iDgi(z
�)dz = 0:(71)

Since (��k)N = 0 and �k� � 0 for all k, we have (d�)N � 0. Therefore all product terms
in both summations in (71) are nonpositive, so we can use gN (z�) < 0 and ��B > 0 to
deduce that

(d�)N = 0; DgB(z
�)dz = 0:(72)

By multiplying (70a) by dTz and using (72), we obtain

dTzDfz(z
�; ��)dz = �d

T
z Dg(z

�)Td� = 0:(73)

Assumption 6, together with dz 2 kerDgB(z
�) (from (72)) and (73), implies that

dz = 0. Hence, (70a) reduces to

Dg(z�)Td� = 0:(74)

Finally, we are in a position to verify that (65) is satis�ed. Because of dz = 0 and
(d�)N = 0, we have

gB(z
� + �dz) = gB(z

�) = 0;

gN (z
� + �dz) = gN (z

�) < 0;
��N + � (d�)N = 0;
��B + � (d�)B > 0; for � > 0 su�ciently small.
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From (74) and the fact that f is linear in �, we have

f(z� + �dz; ��+ �d�) = f(z�; ��+ �d�) = f(z�; ��) + �Dg(z�)Td� = 0:

Together, these formulae indicate that (65) holds, so we are done.
Lemma 5.6. Suppose that our standing assumptions are satis�ed. Then there

exist constants L̂ > 0, �L > 0, and �3 2 (0; �2] (where �2 is de�ned in Lemma 5.5)
such that for each (z; �; y) 2 S(�3) we have



� f(z; �) +Dzf(z; �)(z

� � z) +Dg(z)T (�� � �)
g(z) � g(z�) +Dg(z)(z� � z)

�



 � L̂�2;(75)

and 



� Dzf(z; �)(z
� � z) +Dg(z)T (�� � �)

y �Dg(z)(z� � z) + g(z�)

�



 � �L�:(76)

where, as in (41), �� is chosen from the optimal KKT multiplier set S�� to minimize
the left-hand side of (75).

Proof. We start by proving (75). As in (41), we denote the minimand of the
left-hand side in (75) by (z�; ��), whose existence follows from compactness of Sz;�.
We show �rst that k(z�; ��)� (z; �)k = O(�) and then prove the result by a Lipschitz
continuity argument.

By considering (z; �; y) 2 S(�2), we have from (10), (22), and the fact that y � 0
that kf(z; �)k � �max� and

kg(z)+k = k[rg � y]+k � krgk � �max�:(77)

Since for all (z; �; y) 2 S(�2), we have k(z; �)k � Ĉ1 for some constant Ĉ1, it follows
that

(z; �; y) 2 S(�2) ) j�Tg(z)j = j�T (rg � y)j � k�kkrgk+ j�
Tyj � (Ĉ1�max + P )�:

We have shown that the right-hand side in (61) is O(�) and therefore, by the result
of Lemma 5.5, we have

k(z; �)� (z�; ��)k � �C1�(78)

for some constant �C1 and all (z; �; y) 2 S(�2).
By the Lipschitz continuity assumption (see Assumption 5 and the comments

that follow) we can choose �3 2 (0; �2] such that Dzf(z; �) and Dg(z) are Lipschitz
continuous for distS1

z;�
(z; �) � �3. Therefore, the matrix function�

Dzf(z; �) Dg(z)T

Dg(z) 0

�
is also Lipschitz continuous as a function of (z; �) in this neighborhood. Since (z�; ��) 2
Sz;�, we have f(z�; ��) = 0 and we have that



� f(z; �) +Dzf(z; �)(z

� � z) +Dg(z)T (�� � �)
g(z) � g(z�) +Dg(z)(z� � z)

�



 � �Lk(z�; ��)� (z; �)k2;(79)

for some constant �L > 0 and all (z; �) with distS1
z;�
(z; �) � �3. We obtain the result

(75) by combining (78) with (79) and de�ning L̂ = �L �C2
1 .
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For (76), we have that�
�Dzf(z; �)(z� � z)�Dg(z)T (�� � �)

y �Dg(z)(z� � z) + g(z�)

�
=

�
rf
rg

�
�

�
f(z; �) +Dzf(z; �)(z

� � z) +Dg(z)T (�� � �)
g(z) � g(z�) +Dg(z)(z� � z)

�
;

and therefore



� Dzf(z; �)(z
� � z) +Dg(z)T (�� � �)

y �Dg(z)(z� � z) + g(z�)

�



 � 



� rf
rg

�



+ L̂�2;

where the last term is a consequence of (75). Since k(rf ; rg)k = O(�) by (22), we
have the result.

We use Lemma 5.6 to estimate the quantities �f , �g, �f , and �g de�ned by (42).
For (z; �; y) 2 S(�3), we have from (41), (42c), (42d), and (75) that

k�fk � L̂�
2; k�gk � L̂�

2:(80)

Similarly, we have from (41), (42a), (42b), and (76) that

k�fk � �L�; k�gk � �L�:(81)

Lemma 5.7. Suppose that the standing assumptions hold and �3 is given by
Lemma 5.6. Then there is a constant C11 such that the solution (t0; u0; v0) of (44)
satis�es k(t0; u0; v0)k � C11� for all (z; �; y) 2 S(�3).

Proof. Note that (t0; u0; v0) satis�es the equations (47) if we replace (rf ; rg; 0) on
the right-hand side by (�f ; �g; 0). The main di�erence between the two systems is the
size of the right-hand sides: O(�) in (47), O(�2) here from (80). By using the same
technique of proof as in Lemma 5.2, we can show that

kt0k � C9(�
2 + ku0Bk);(82)

for some constant C9. This estimate, together with the techniques of the second part
of the proof of Lemma 5.3, implies that

kDu0k � C3�
3=2; kD�1v0k � C3�

3=2;(83)

where D is de�ned as in (50). The estimates kDk � C7�
�1=2 and kD�1k � C7�

�1=2

obtained from (51) and (52) can now be combined with (82) and (83) to complete the
proof.

5.4. Bounds for uB and vN . In this subsection we address the most di�cult
part of the proof: showing that the components uB and vN from (43) are O(�k). As
in the case of a�ne f , the key to our result is to show that (uB; vN ) is the solution of a
certain quadratic program (Theorem 5.12 below). Unlike the a�ne case, however, the
coe�cient matrix in this quadratic program does not remain constant. Instead, this
matrix satis�es a constant column rank condition (Theorem 5.11), and this condition
is enough to yield the desired bound (Lemmas 5.8 and 5.9).

We start by proving a novel variant of a lemma from Monteiro and Wright [6,
Lemma 2.2]. The de�nition of constant column rank appears at the end of Section 1.

Lemma 5.8. If H is a bounded set in IR
p�q with constant column rank and k � k is

any norm on IR
q , there exists a nonnegative constant L = L(H) with the property that
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for each H 2 H and h 2 ranH, there is a solution w 2 IR
q of the equation Hw = h

for which

kwk � Lkhk:

Proof. The case of h = 0 is trivial, so we assume throughout the proof that h 6= 0.
To obtain a contradiction, assume there exist fHkg � H and fhkg � IR

q n f0g
such that, for each k, hk 2 ranHk and

dist(Hk)�1hk (0) > kkhkk(84)

where (Hk)�1hk = fw : Hkw = hkg. We may assume without loss of generality (by
taking subsequences and dividing by khkk if necessary) that Hk ! H 2 IR

p�q and
hk ! h 2 IR

q n f0g:
Let J be a maximal set of column indices of H such that H�J has linearly in-

dependent columns. By the assumption of constant column rank, we �nd that for
large enough k, J is also a maximal set of column indices of Hk for which Hk

�J has
linearly independent columns. Since hk 2 ranHk, it follows that, for large k, there is
a (unique) solution wk

J , of the system

Hk
�Jw

k
J = hk:

Now choose a subset I of the rows of H such that the submatrix HIJ is invertible,
and let

wJ = H�1
IJhI :

It follows that wk
J ! wJ .

For each k we augment wk
J to form wk 2 (Hk)�1hk, by setting wk

j = 0 for j 62 J .

Similarly, we can augment wJ above by setting wj = 0 for j 62 J , to form w 2 H�1h.
Of course wk ! w, and since hk ! h 6= 0, we have

kwkk

khkk
!
kwk

khk
<1;

contradicting (84).
On one hand, Lemma 5.8 extends Ho�man's lemma [4] by allowing H to vary

within a set H rather than remain constant. On the other hand, Ho�man's lemma is
more general in that it applies to linear systems of inequalities as well as equalities.

In the following result, we partition the matrix H 2 H � IR
p�q as

H =
�

~H Ĥ
�
;

where ~H 2 IR
p�~q and Ĥ 2 IR

p�q̂, with ~q + q̂ = q. We use ~w and ŵ to denote vectors
in IR

~q and IR
q̂, respectively. Below, as usual, k � k is the 2-norm.

Lemma 5.9. Let H be a bounded subset of IRp�q with constant column rank.
Then there exists a nonnegative constant L = L(H) with the property that for any
q̂ � q̂ diagonal matrix S > 0, matrix H =

�
~H Ĥ

�
2 H and vector h 2 ranH, the

(unique) ŵ component of the solution of the following problem

min
( ~w;ŵ)

1

2
kSŵk2; subject to ~H ~w + Ĥŵ = h(85)
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satis�es

kŵk1 � Lkhk1:

Proof. We adapt the proof of Monteiro and Wright [6, Lemma 7].
Assume for a contradiction that there exist sequences of positive diagonal matrices

fSkg, matrices fHkg � H, and vectors fhkg such that hk 2 ranHk for each k, and

lim
k!1

kŵkk1
khkk1

=1;

where ( ~wk; ŵk) is a solution of (85), with S = Sk, H = Hk and h = hk. (Observe
that (85) can be viewed as a strongly convex quadratic program in ŵ alone by writing
its feasible region as the a�ne set fŵ : ~H ~w + Ĥŵ = h for some ~wg, so the solutions
( ~wk; ŵk) are each unique in their ŵk components.) By taking a subsequence if nec-
essary, we can de�ne a constant L1 > 0 and a nonempty index set J � f1; 2; : : :; q̂g
such that

jŵk
j j

khkk1
� L1; 8j 62 J ;(86a)

lim
jŵk

j j

khkk1
= 1; 8j 2 J :(86b)

Consider the following linear system

~Hk ~w + Ĥkŵ = hk;
ŵj = ŵk

j ; 8j 62 J ;
(87)

and note that ( ~wk; ŵk) is a solution of this system.
Consider the coe�cient matrix in (87), which is

�
~H Ĥ

�
followed by the row

vectors
�
0 (ej)T

�
, j 62 J , where ej is the vector in IR

q̂ composed of 0s except for
a 1 in its jth entry. The rank of this matrix is the sum of the cardinality of the
set f1; 2; : : :; q̂g n J and the rank of

�
~H Ĥ�J

�
. Hence, the family of coe�cient

matrices of (87) has constant column rank. By Lemma 5.8, the system (87) has a
solution (~xk; x̂k) such that

kx̂kk1 � k(~x
k; x̂k)k1 � L2

�
khkk1 +max

j =2J
jŵk

j j

�
;

where L2 is a constant depending only on H and J . Therefore from (86a), we have

kx̂kk1 � L3kh
kk1;

where L3 = L2(1 + L1). From (86b) there exists K � 0 such that for all k � K we
have

jŵk
j j > L3kh

kk1; 8j 2 J ;

and therefore

jŵk
j j > kx̂

kk1; 8j 2 J ; 8k � K:
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From this relation and the fact that ŵk satis�es the second equation of (87), we obtain

kSkx̂kk2 =
X
j2J

(Skjjx̂
k
j )

2 +
X
j =2J

(Skjj x̂
k
j )

2

<
X
j2J

(Skjjŵ
k
j )

2 +
X
j =2J

(Skjjŵ
k
j )

2

= kSkŵkk2; for all k � K.(88)

This relation, together with the fact that x̂k satis�es the �rst equation of (87), con-
tradicts the assertion that ŵk is an optimal solution of (85) with S = Sk, H = Hk,
and h = hk.

In Theorem 5.11 below, we identify the matrix set H in Lemmas 5.8 and 5.9 with
the set ��

Dzf(z; �) DgB(z)T 0
�Dg(z) 0 �I�N

�
: distS1

z;�
(z; �) � �

�
;(89)

for some � > 0. To apply this result, we need to show that this set has constant
column rank, as we do in the next technical lemma and Theorem 5.11.

Lemma 5.10. Let ; 6= J � B and ; 6= K � N . Let I denote the identity in
IR
P�P . If the two-sided projection of Dzf(z; �) onto ker(DgB) is positive de�nite,

then for t 2 IR
n and �J 2 IR

jJ j, we have

(t; �J ) 2 ker

�
Dzf(z; �) DgJ (zk)T

�DgB(zk) 0

�
(90)

if and only if t = 0 and �J 2 ker(DgJ )
T . In addition, we have

dimker

�
Dzf (DgJ )T 0
�Dg 0 �I�K

�
= dimker(DgJ )

T :(91)

Proof. The reverse implication in the �rst statement is obvious. To prove the
forward implication, assume �rst that (90) holds. We then have

(Dzf)t 2 ran (DgJ )
T � ran (DgB)

T :(92)

Let Z be a basis of ker(DgB), so that ZT ran (DgB)
T = 0. Because DgBt = 0, we

have t = Z~t for some ~t. From (92), we have ZT (Dzf)t = 0, and so ZT (Dzf)Z~t = 0.
Because of our nonsingularity assumption on the projection of Dzf(z; �), we have
~t = 0 and therefore t = 0. Hence, by substituting in (92), we obtain �J 2 ker(DgJ )T ,
so the proof of the �rst part is complete.

We now prove (91). Let the vector (t; �J ; sK) have the property that

(t; �J ; sK) 2 ker

�
Dzf (DgJ )T 0
�Dg 0 �I�K

�
:

By partitioning appropriately, we have

(Dzf)t + (DgJ )
T�J = 0(93a)

�DgBt = 0;(93b)

�(DgN )t� INKsK = 0:(93c)
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Now we can apply the �rst part of the theorem to (93a) and (93b) to �nd that the
system (93) can be written equivalently as

t = 0;

(DgJ )
T�J = 0;

�INKsK = 0:

Since K � N , the last of these equations implies that sK = 0. Therefore the solutions
of (93) are the vectors of the form (t; �J ; sK) = (0; �J ; 0), for all �J 2 ker(DgJ )

T ,
and the proof is complete.

Under certain assumptions (including Assumption 7), it follows from (91) that
the set (89) has constant column rank for some � > 0. We state the result formally.

Theorem 5.11. Suppose that the standing assumptions are satis�ed. Then there
is a constant � > 0 such that the bounded set (89) has constant column rank.

Proof. Because of Assumption 6 and continuity of Dzf(z; �) and Dg(z) with
respect to z, we can choose � > 0 so that

- Dzf(z; �) and Dg(z) are bounded on the bounded set Sz;� + �IB, and
- the two-sided projection of Dzf(z; �) onto kerDgB(z) is invertible.

Hence, Lemma 5.10 applies.
Suppose for contradiction that (89) does not have constant column rank for any

� > 0. Then there is a sequence f(zk; �k)g converging to some (z�; �1) 2 S1z;� (hence,

Dzf(zk ; �k)! Dzf(z�; �1)), and some index sets J � B, K � N such that

dimker

�
Dzf(zk; �k) DgJ (zk)T 0
�Dg(zk) 0 �I�K

�
6= dimker

�
Dzf(z�; �1) (Dg�J )

T 0
�Dg� 0 �I�K

�
:(94)

Note that there cannot be an in�nite subsequence for which the left-hand side of
this relation exceeds the right-hand side, since for any sequence of matrices fAkg
converging to A with corresponding sequences fakg with 0 6= ak 2 kerAk, the limit
points of fak=kakkg belong to kerA. Therefore we can replace the \6=" by \<" in
(94) without loss of generality. Because of (91), we therefore have that

dimker(DgkJ )
T < dimker(Dg�J )

T

for all k. This inequality contradicts Assumption 7, so no such sequence exists, and
the proof is complete.

Finally, we state the quadratic program for which (t; uB; vN ) is a solution, and
we use the results above to estimate the size of these components. See (42) and (43)
for the de�nitions of �f , �g and t; u; v respectively.

Theorem 5.12. Suppose that the standing assumptions hold, and let (z; �; y) 2
S(�4), where �4 = min(�3; �), and �3 and � are de�ned in Lemma 5.6 and Theorem
5.11, respectively. Then the solution (t; u; v) of (43) is also the solution of the following
convex quadratic program:

min
(�t;�uB;�vN )

1
2kDBB�uBk

2 + 1
2k(DNN )�1�vNk2;

subject to(95) �
Dzf(z; �) DgB(z)T 0
�Dg(z) 0 �(I�N )

�24 �t
�uB
�vN

35 =

�
�f �DgN (z)TuN

�g + I�BvB

�
:
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Moreover, there is a constant C12 such that

k(uB; vN )k � C12k(�f ; �g; uN ; vB)k:(96)

Proof. Note �rst that the matrices D, D�1 (see (50)) are well de�ned because of
the restriction (z; �; y) 2 S(�4).

It is immediate from (43) that (t; uB; vN ) is feasible for (95). To prove optimality,
we need to show that the remaining KKT conditions hold; that is,24 0

D2
BBuB

D�2
NN vN

35 2 ran

0@24 (Dzf)T �DgT

DgB 0
0 �IN�

351A :

By using arguments similar to those of Ye and Anstreicher [20, Section 3], we can
show that

ran

0@24 (Dzf)T �DgT

DgB 0
0 �IN�

351A = ran

0@24 �Dzf �DgT

DgB 0
0 �IN�

351A :

Hence, it su�ces to show that24 0
D2
BBuB

D�2
NN vN

35 =

24 �Dzf �DgT

DgB 0
0 �IN�

35� z + t� z�

�+ u� ��

�
;(97)

where �� is de�ned in (41). To verify this claim, note �rst that by (42a) and (43), we
have

Dzf(z; �)t +Dg(z)T u = �f = Dzf(z; �)(z
� � z) +Dg(z)T (�� � �);

and therefore

0 = �Dzf(z; �)(z + t � z�) �Dg(z)T (�+ u� ��):

For the second part of (97), we have from (42b) and (43) that

�(DgB)t = vB + (�g)B = vB + yB � (DgB)(z
� � z);

D2u = ��1(Y u) = ��1(��Y e � �v) = �y � v;

and therefore

D2
BBuB = (DgB)(z + t� z�):

Finally, we use (43) together with ��N = 0 to write

D�2
NN vN = Y �1NN�NN vN = ��N � uN = �IN�(�+ u� ��):

We now prove (96). For (z; �; y) 2 S(�4), we have

distS1
z;�

(z; �) � k(z; �) � (z�; �̂)k � �4 � �:

It therefore follows from Theorem 5.11 that the coe�cient matrix in (95) lies in the
set (89), which has constant column rank. Our claim is proved by applying Lemma
5.9 to the quadratic program (95).
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5.5. The Fast Step Estimate. We are now in a position to tie together the
results of Subsections 5.2, 5.3, and 5.4 and therefore obtain an estimate for the length
of the fast step.

Corollary 5.13. Suppose that the standing assumptions hold. Then for the
positive constant �4 de�ned in Theorem 5.12 and all (z; �; y) 2 
(�4), the fast step
(�z;��;�y) calculated by setting ~� = 0 in (12) satis�es

k(�z;��;�y)k � C0�;(98)

for some constant C0.
Proof. From Theorem 5.4, we have k(��N ;�yB)k = O(�) whenever (z; �; y) 2

S(�4) � S(�1). We seek similar bounds on the remaining components, which are
(��B;�yN ) and �z.

From Lemma 5.7, we have for (z; �; y) 2 
(�3) that k(t0; u0; v0)k � C11�. There-
fore,

k(uN ; vB)k � k(��N ;�yB)k+ k(u
0
N ; v

0
B)k = O(�):

Since �f and �g are bounded by �L� over the set 
(�3) (Lemma 5.6 and (81)), the right-
hand side of (96) is O(�). Hence, the second part of Theorem 5.12 yields k(uB; vN )k =
O(�). Hence,

k(��B;�yN )k � k(uB; vN )k+ k(u
0
B; v

0
N )k = O(�):(99)

Finally, we show that the desired estimate holds for �z as well. The proof is
almost the same as the proof of Lemma 5.2, so we skip the details. Starting with (12),
we perform block elimination to obtain a system with the same coe�cient matrix as
in (48), but a di�erent right-hand side; namely,�

rf � (DgN )T�NY
�1
N ((rg)N � yN )

(rg)B � yB

�
=

�
rf � (DgN )

T�NY
�1
N (rg)N

(rg)B

�
+

�
(DgN )

T�N
�yB

�
:

(100)

The �rst vector on the right is exactly the right hand side of (48), hence its norm
is O(�) as shown in the proof of Lemma 5.2. The second vector on the right of the
above equation is also O(�) from Lemma 5.1. Thus the vector on the left hand side
of (100) is O(�) for (z; �; y) 2 S(�4). Hence, as in (49), we have that�
Dzf(z�; �̂) (Dg�B)

T

�Dg�B 0

� �
�z
��B

�
= O(�) + O(�+ kz � z�k+ k�� �̂k)

�
�z
��B

�
= O(�) + O(�+ �4)

�
�z
��B

�
:(101)

By using the same argument as in Lemma 5.2, we have that k�zk = O(�)+O(k��Bk).
(A careful analysis shows that it is not even necessary to decrease �4 to obtain this
estimate.) Because k��Bk = O(�) by (99), we have k�zk = O(�), as required.

5.6. Proof of Theorem 3.3. At long last, we are in a position to prove Theorem
3.3. We look at a subsequence that approaches the limit point (z�; �̂; y�), and we show
that once this subsequence enters a su�ciently small neighborhood of this point, with
a su�ciently large iteration count, the following things happen:
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� When the fast step is tried, the initial choice (18) for � satis�es the conditions
(19), and the new iterate satis�es �k+1 � ��k and is accepted by the main
algorithm.

� The new iterate and all subsequent iterates cannot escape a (slightly larger)

neighborhood of (z�; �̂; y�), and fast steps are taken at all these iterates too.

� The entire sequence converges superlinearly to the limit point (z�; �̂; y�).
Proof. (Theorem 3.3) To prove the assertion that the initial choice of fast step

length (18) is eventually always accepted, we collect a few relevant facts.
First, note from the choice of constant �3 in the proof of Lemma 5.6 and the

fact that �4 2 (0; �3] that Df(z; �) and Dg(z) are Lipschitz continuous on an open
neighborhood of S(�4). We denote the relevant Lipschitz constant by L.

Second, note that the sequence f��̂k=�

tkg decreases monotonically to zero. On safe

steps, we have �k+1 < �k while tk (and therefore the denominator) remain unchanged.
On fast steps, we have from the relationship between �, �
, and �̂ in (14) that

��̂k+1
�
tk+1

�
��̂��̂k
�
�
tk

�
�
��̂k
2�
�
tk

=
1

2

��̂k
�
tk

:(102)

If there are in�nitely many fast steps, the sequence is driven to zero because the
factor 1=2 in (102) occurs in�nitely often. If there are only �nitely many fast steps,
the denominator �
tk eventually settles down to a constant, and the sequence is driven
to zero by the fact that �k # 0.

We now proceed with the main part of the proof. Let fkjg1j=0 be the sequence of
indices such that

lim
j!1

(zkj ; �kj ; ykj ) = (z�; �̂; y�):(103)

Now choose the index J su�ciently large that the following conditions are satis�ed:

(zkJ ; �kJ ; ykJ ) 2 
(�4=4);(104a)

�kJ �
(1� �)�4

4C0
;(104b)

�1��̂kJ
�

(1� �
)(
max � 
min)

2C2
0

;(104c)

�1��̂kJ
�

�
�min

(L=2 + �max)C2
0

;(104d)

��̂kJ=�

tkJ � �=2;(104e)

�kJ �
�

2C2
0

:(104f)

Let us �rst show that the value � = 1���̂kJ =�

tkJ from (18) satis�es the condition

(19a); that is,

�i(�)yi(�) � (
min + �
t+1(
max � 
min))�(�):(105)

(We omit the subscript kJ here and later for clarity.) For the left-hand side of (105),
we have

�i(�)yi(�) = (�i + ���i)(yi + ��yi)

= �iyi(1� �) + �2��i�yi

� (
min + �
t(
max � 
min))(1 � �)�� C
2
0�

2;
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where we used the relationships (40), (98), and �iyi � 
� with 
 = 
min + �
t(
max �

min). For the right-hand side of (105), we have by the same logic that

�(�) = (�+ ���)T (y + ��y)=P

� (1� �)�+ �2k�ykk��k=P

� (1� �)�+C2
0�

2:(106)

Hence, for the condition (105) to hold, it su�ces that

[
min + �
t(
max � 
min)](1� �)�� C
2
0�

2

� [
min + �
t+1(
max � 
min)](1� �)�+ C2
0�

2:

This inequality is equivalent to

(�
t � �
t+1)(
max � 
min)�(1� �) � 2C2
0�

2:(107)

By substituting 1 � � = ��̂=�
t from (18) and rearranging, we �nd that (107) is in
turn equivalent to (104c). Hence condition (19a) is satis�ed.

We need the Lipschitz continuity assumption for the second condition (19b). Be-
cause of (10) and the de�nition of ~� in the fast routine, we can rewrite this condition
as

kf(z(�); �(�))k � (1 + �
t+1)��(�);(108)

where the current point (z; �) has kf(z; �)k � ��. Taylor's theorem can be used
to expand f(z(�); �(�)), exactly as in (28). The di�erence here is that Lipschitz
continuity can be used to obtain a tighter estimate of �rf . Note that the arguments
of Df in (30) lie within the domain of Lipschitz continuity, since by (104a), (104b),
and (98), we have

k(z + ���z; �+ ����) � (z�; �̂)k

� k(z � z�; �� �̂)k+ k(�z;��)k � �4=4 + C0�kJ � �4=2:

Therefore we have from (29) and (98) that

k�rfk �
1

2
Lk(�z;��)k2 �

1

2
LC2

0�
2;

As in (28), it follows that

kf(z(�); �(�))k � (1� �)��+
1

2
LC2

0�
2:

Meanwhile, a trivial change to the estimate (106) yields

�(�) � (1� �)��C2
0�

2:

From these last two inequalities, we see that condition (108) is satis�ed if

(1 � �)�� +
1

2
LC2

0�
2 � (1 + �
t+1)�[(1� �)��C2

0�
2]:

Because (1 + �
t+1)� � �max, from (21), this last condition in turn is satis�ed if

1

2
LC2

0�
2 � �
t+1�(1 � �)�� �maxC

2
0�

2:
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By substituting from (18) and using the bound �min � �, we �nd that this last
condition is implied by (104d), so we conclude that (108) is also satis�ed. By similar
logic, we can show that the same conditions (104) also guarantee that the remaining
condition (19c) holds.

Finally, we verify that �kJ+1 � ��kJ , so that the fast step is accepted by the
main algorithm. Because of (106), this condition is satis�ed if

(1� �)�+ C2
0�

2 � ��;

which, by substitution of (18), is equivalent to

��̂=�
t +C2
0� � �:

Conditions (104e) and (104f) together guarantee that this conditions holds, so we are
done.

At this point, we have shown that a fast step is taken from (zkJ ; �kJ ; ykJ ). The
new iterate does not move away too far from the limit point, if at all, because

k(zkJ+1; �kJ+1; ykJ+1) � (z�; �̂; y�)k

� k(zkJ ; �kJ ; ykJ )� (z�; �̂; y�)k+ k(�zkJ ;��kJ ;�ykJ )k

� �4=4 + C0�kJ

� �4=2;

where the last inequality is a consequence of (104b) and (98). Hence, we have that
(zkJ+1; �kJ+1; ykJ+1) 2 S(�4=2), and so the estimate (98) applies again at iteration
kJ + 1. The remaining conditions (104b){(104f) continue to apply at the new iterate,
and the same logic as above can be used to show that a fast step is again taken from
this iterate. Because of these two consecutive fast steps, we have

�kJ+2 � ��kJ+1 � �
2�kJ :(109)

We can continue in this vein, inductively, to show that only fast steps are taken from
this point onwards, and that the iterates never leave the neighborhood S(1

2 �̂). The
last statement follows from (98) and (109), since we have for all s � 0 that

distS1
z;�
(zkJ+s; �kJ+s) � �̂=4 + C0(�kJ + �kJ+1 + � � �+ �kJ+s�1)

� �̂=4 + C0�kJ (1 + � + �2 + � � �)

� �̂=4 +
C0

1� �
�kJ

� �̂=2:

We now examine the rate of convergence of f�kg. From (18) and (106), we have
for all k � kJ that

�k+1 � �k

�
��̂k
�
tk

�
+C2

0�
2
k:

Hence for some K � kJ , the �rst term on the right-hand side dominates the second,
and we have

�k+1 � �
�̂+1
k =�
tk ; for all k � K.
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The proof that f�kg converges to zero with Q-order at least 1+ �̂ follows by standard
arguments; see Wright [15, Theorem 6.3] and Wright and Zhang [19, Theorem 5.2].
Hence, part (i) of the theorem is proved.

For (ii), we show that the sequence of iterates is Cauchy. For all K2 > K1

su�ciently large, we have from (98) that



(zK2 ; �K2 ; yK2) � (zK1 ; �K1 ; yK1)


 �

K2X
k=K1

�kk(�z
k;��k;�yk)k

� C0

1X
k=K1

�k

� C0�K1

�
1 + �+ �2 + � � �

�
= C0�K1

1

1� �
! 0 as K1 !1.(110)

Hence the sequence is Cauchy, so it converges to a limit point, which must be the
limit point (z�; �̂; y�) of the subsequence (103). Its R-order follows immediately from
(110) and the result of part (i).

6. Existence of a Limit Point. In our main result, Theorem 3.3, we assumed
that a limit point of the sequence f(zk; �k; yk)g actually exists. This condition will
follow immediately if we can show that the sequence is bounded, by compactness.

We show in Lemma 6.1 that boundedness of the solution set S is a consequence
of boundedness of the feasible set C de�ned in (2). Then, in Lemma 6.2, we show that
boundedness of the iterate sequence f(zk; �k; yk)g also holds. Thus if boundedness of C
is added to the standing assumptions, the algorithm is guaranteed to converge globally
and superlinearly. Given that the method of [11] has these convergence properties
without boundedness of C, though under the assumptions that C is polyhedral and F
satis�es a special property called the scaled Lipschitz condition, it would be interesting
to investigate global convergence without boundedness of C.

Lemma 6.1. Suppose that Assumptions 1 and 3 hold and that the set C de�ned by
(2) is bounded. Then the solution set S is nonempty, bounded, closed, and therefore
compact.

Proof. By Theorem 3.1 of Harker and Pang [3], the set of vectors z� that solves (1)
is nonempty. This set is also bounded because of the restriction z� 2 C. Boundedness
of the solution components y� follows trivially because y� = g(z�) and g is smooth.

We prove boundedness of the optimal �� components by contradiction. If the
claim does not hold, we can choose a sequence of solutions (ẑk; �̂k; ŷk) 2 S such that

k�̂kk1 " 1. (The other components ẑk and ŷk remain bounded, by the argument of
the preceding paragraph.) We can assume without loss of generality that

(ẑk; ŷk)! (ẑ; ŷ); with ẑ 2 C; ŷ � 0;

and

�̂k

k�̂kk1
! �̂; with k�̂k1 = 1; �̂ � 0:

Moreover, since (�̂k)T g(ẑk) = 0 for all k, we have that

�̂i > 0 ) gi(ẑ) = 0:(111)
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Because of (3) and (4), we have that

�(ẑk) +
mX
i=1

Dgi(ẑ
k)�̂ki = 0; for all k:

Dividing by k�̂kk1 and taking the limit as k !1, we have

0 =
mX
i=1

Dgi(ẑ)�̂i =
X

ij�̂i>0

Dgi(ẑ)�̂i:(112)

Given the Slater point �z (Assumption 3), convexity of g, and the property (111),
we have that

�̂i > 0 ) 0 > gi(�z) � gi(ẑ) +Dgi(ẑ)
T (�z � ẑ) = Dgi(ẑ)

T (�z � ẑ):(113)

But this inequality implies thatX
ij�̂i>0

(�z � ẑ)TDgi(ẑ)�̂i < 0;

which contradicts (112). Hence, f�̂kg cannot be unbounded, so our proof is complete.
Closedness of S follows immediately from the de�nition.
Lemma 6.2. Suppose that Assumptions 1 and 3 hold and that C is bounded. Then

the iterate sequence f(zk; �k; yk)g is bounded.
Proof. We start by showing that there is a constant B > 0 such that gi(zk) � B

for all i and k. From this observation together with Assumption 3, we deduce that
fzkg is bounded. Boundedness of fykg follows directly from boundedness of fzkg.
The �nal part of the proof uses an argument like that in the proof of Lemma 6.1.

As C is bounded, we have from [10, Corollary 8.7.1] that the set fz : gi(z) � Bg
is also bounded for any constant B > 0. Now (zk; �k; yk) 2 
 for all k, hence we have
from (10), (22), and yk � 0 that

gi(z
k) = [rkg ]i � y

k
i � [rkg ]i � kr

k
gk � �max�k � �max�0:

So if we de�ne B = �max�0, we have gi(z
k) � B for all k = 0; 1; 2; : : : and i =

1; 2; : : : ;m, yielding boundedness of fzkg.
Boundedness of fykg follows immediately from (10), since

kykk = krkg � g(z
k)k � �max�0 + kg(z

k)k:

The right-hand side of this expression is bounded because fzkg is bounded and g is
continuous.

The remainder of the proof emulates the proof of Lemma 6.1 closely. Assume for
a contradiction that f�kg is unbounded. Because fzkg and fykg are bounded, we can
choose a subsequence K such that as k !1, k 2 K,

(zk; yk)! (ẑ; ŷ)

and k�kk1 " 1 such that

�k

k�kk1
! �̂; with k�̂k1 = 1; �̂ � 0:
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Moreover if �̂i > 0 we must have gi(ẑ) � 0 | a substitute for (111) in the proof of
Lemma 6.1 | since otherwise we would have

�0 � lim
k!1;k2K

�k � lim
k!1;k2K

�k�kk1�̂igi(ẑ)=P " 1:

Also, from (4) and (10), we have that

k�(zk) +
mX
i=1

Dgi(z
k)�ki k = kr

k
fk � �max�0;

hence dividing by k�kk1 and letting k ! 1, k 2 K, yields (112). The statement
(113) now holds with greater-than-or-equal to replacing the �nal equality, and the
subsequent contradiction follows.

We conclude with a corollary of Lemma 5.10 that throws additional light on our
assumptions.

Lemma 6.3. Suppose that the standing assumptions are satis�ed. Then for any
(z�; �) 2 Sz;�, we have�

Dzf(z� ; �) DgB(z�)T

�DgB(z�) 0

� �
�z
��

�
=

�
0
0

�
(114)

if and only if �z = 0 and �� 2 kerDgB(z�)T . In particular, the Jacobian matrix in
(114) is invertible if and only if DgB(z

�) has full row rank.
Assumption 6 is a weak version of the better-known condition that the \active"

submatrix (114) of the Jacobian (6) is invertible|an assumption that is made in most
local convergence analyses of nonlinear programming algorithms includingWright and
Ralph [18]. Allowing nonzero vectors �� in the null space of the above Jacobian
matrix amounts to allowing nonunique optimal multipliers �; this 
exibility relies on
the constant rank condition, Assumption 7. The main point of the current paper
is that superlinear convergence still holds when the weaker (but more complicated!)
assumptions of this paper are used instead of the standard ones.

7. Computational Experience and Discussion. We now discuss some com-
putational experience with the algorithm on some small test examples. Our basic
�nding is that numerical roundo� e�ects interfere with the results of the analysis
above, just as they interfere with superlinear convergence of interior-point methods
for linear programming and linear complementarity problems (see Wright [16, 17]).
The theoretical behavior can, however, be observed on carefully designed problems
that are not a�ected by roundo�. We conclude by discussing some open questions
arising from our computational experience and from the theoretical analysis of this
paper.

In our implementation of the algorithm of Section 2, the parameters (14) were
chosen as follows:

�safe = :5; �fast = 98; �� = :01; �� = :95;

� = :1; �̂ = :5; �min = 10k(r0f ; r
0
g)k=�0;


min = :0001; 
max = :01; �
 = :49; � = min(:2; min((12�
)
1=�̂ ; 1� �)):

(As indicated, we used di�erent values of � for the fast and safe step procedures.)
We present results for three example problems, each of which is stated here as

a convex program and reformulated as an NCP (3), (4) by the procedure outlined
after (7).
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Example 1.

min z1 + z2 s.t. (z1 � 1)2 + (z2 � 1)2 � 2;(115)

for which the NCP reformulation has N = 2, P = 1, and

g(z) = (z1 � 1)2 + (z2 � 1)2 � 2; �(z) =

�
1
1

�
:

The unique solution for this problem is z� = 0 with unique multiplier �� = 1=2. The
Jacobian of the active constraints DgB(z�)T has full rank of one at the solution, so
this problem satis�es the strong nondegeneracy condition that is usually assumed to
hold in conventional superlinear convergence analysis.

Example 2.

min z1 s.t.

�
(z1 � 2)2 + z22
(z1 � 4)2 + z22

�
�

�
4
16

�
:(116)

This problem has a unique solution in the z component, namely, z� = 0. The two cir-
cular constraints become linearly dependent at the solution, however, and the optimal
multiplier set is determined by the condition

�(z�) +Dg(z�)T� = 0; � � 0;

which in our case reduces to

S�� = f(14 � 2�2; �2) : 0 � �2 �
1
8g:(117)

All standing assumptions except Assumption 7 are satis�ed by this example. The
active constraint Jacobian is

DgB(z)
T = 2

�
(z1 � 2) z2
(z1 � 4) z2

�
;(118)

which clearly has rank one at the solution z� = 0, but rank two at some point in any
neighborhood of this point.

Example 3.

min z21 + z1z2 + 2z22 + z1 + z2 s.t. z � 0; 1
2 (z1 � 2)2 + 1

2(z2 � 1)2 � 5
2 ;(119)

for which the NCP reformulation has N = 2, P = 3, and

g(z) =

24 �z1
�z2

5
2 �

1
2(z1 � 2)2 � 1

2 (z2 � 1)2

35 ;
�(z) =

�
2z1 + z2 + 1
z1 + 4z2 + 1

�
;

where �(�) is the gradient of the objective function in (119). The solution is z� = (0; 0).
All three constraints are active at this point, so that their gradients are linearly
dependent. However, the matrix DgB(z)

T 2 IR
2�3 has constant column rank 2, so the

CRCQ Assumption 7 is satis�ed. The optimal multiplier set is

S�� = f(1� 2�3; 1� �3; �3) : 0 � �3 �
1
2g:(120)
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Table 1

Asymptotic behavior for Example 1, the nondegenerate problem

Iteration Step Type � k��Bk=�
11 fast .984(-4) .172(+1)
12 fast .199(-5) .175(+1)
13 fast .117(-7) .176(+1)
14 fast .108(-10) .176(+1)
15 terminate .613(-15)

Table 2

Asymptotic behavior for Example 2, which does not satisfy Assumption 7

Iteration Step Type � k��Bk=�
5 fast .544(-4) .903(-1)
6 fast .403(-6) .896(-1)
7 fast .522(-9) .239(+2)
8 fast .498(-13) .262(+10)
9 terminate .747(-16)

We leave it to the reader to verify that the other standing assumptions hold, though
we mention that the �rst invertibility condition of Assumption 6 is immediate because
the components of g(z) are convex while � is strictly convex.

For all three problems, the algorithm was started at the initial point

(z0; �0) = (1; 1; � � � ; 1)T ; y0 = kg(z0)k1(1; 1; � � � ; 1)T :

The algorithms were terminated when � fell below 10�14.
The behavior of the algorithm during the last few iterations is tabulated in Ta-

bles 1{3. Note that the asymptotic convergence rate is quite rapid in each case, though
not obviously superlinear. Fast steps were eventually accepted at all su�ciently ad-
vanced iterations.

Recall that the key estimate used in deriving our superlinear convergence result
was that the fast (a�ne-scaling) step should be O(�) in norm (see (38)). This estimate
is obtained trivially for nondegenerate problems, in which the matrix in (114) is
invertible and the matrix in (12) approaches a nonsingular limit (see Wright and
Ralph [18, Lemma 5.2]). Our analysis in this paper shows that the estimate holds
too if our standing assumptions, including the CRCQ condition in Assumption 7 are
satis�ed. When the CRCQ fails to hold, however, the analysis of Section 5.4 suggests
that uB and vN|and therefore ��B and �yN|may not longer satisfy this estimate.
Since N = ; in each of our examples, we have tabulated the ratio of k��Bk1 to � to
check that this estimate holds.

As expected k��Bk1 = O(�) for the nondegenerate problem, Example 1, for �
arbitrarily small. For Example 2, which does not satisfy the CRCQ, this estimate
obviously does not hold; the ratio k��Bk1=� blows up for small �. This observation
is consistent with the theory of Section 5.4. The result that requires explanation is
the one from Table 3, which shows the same kind of blowup of the ratio as in Table 2,
even though Example 3 satis�es the standing assumptions of this paper. This blowup
is due to the roundo� error associated with solving the system (12) in the presence of
roundo� error. Recent investigations into the stability of linear equations solvers in
interior-point methods for linear programming and linear complementarity problems
by Wright [16, 17] have shown that similar phenomena occur in these cases too. Ill
conditioning in the linear systems arising in those problems makes it impossible to cal-
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Table 3

Asymptotic behavior for Example 3, which satis�es the standing assumptions of this paper

Iteration Step Type � k��Bk=�
7 fast .279(-4) .702(+1)
8 fast .305(-6) .706(+1)
9 fast .704(-9) .819(+1)
10 fast .159(-12) .205(+9)
11 terminate .106(-16)

culate steps that satisfy the O(�) estimate in the presence of roundo� error when the
linear program is degenerate, despite the theoretical analysis of superlinear conver-
gence which indicates that the exact step is O(�). For both linear programming and
the monotone variational inequalities considered in this paper, superlinear algorithms
continue to have practical importance. Even when strictly superlinear convergence
behavior is not observed|as occurs for many degenerate problems|algorithms that
are theoretically superlinear tend to exhibit rapid linear convergence.

The roundo� error in the computed solution to (12) are most marked in the
components that lie in the \near null space" of the coe�cient matrix. Under As-
sumptions 1{6 of this paper, this space corresponds to kerDgB(z�)T ; that is, the
roundo� errors are largely con�ned to the projection of of ��B into kerDgB(z�)T .
Geometrically, the computed step ��B tends to become tangential to the polyhedral
set of optimal multipliers S��. For instance, the �nal computed step for Example 3
(the fast step computed at iteration 10) has �� = (:326; :163;�:163)� 10�4, which
corresponds to a move along the line segment de�ned by (120). Similarly, the �nal
computed step for Example 2 (at iteration 8) has �� = (�:130; :065)� 10�3, a move
along the line segment de�ned by (117). This observation explains why the large size
of these steps does not interfere with fast convergence of the algorithm. The conver-
gence of �k to zero is governed more by the non-tangential component of ��B and, in
both Examples 2 and 3, this component continues to satisfy the O(�) estimate even
for the smallest values of �.

It would appear from our theoretical analysis and computational observations
that the projection of the exact step ��B into kerDgB(z

�)T is guaranteed to be O(�)
when the CRCQ assumption is satis�ed but not otherwise. For the computed step,
however, the presence of roundo� clouds the distinction between these two cases; the
projected step may be much larger than � regardless of whether Assumption 7 is
satis�ed.

These observations raises the following open question: Can theoretical superlin-
ear convergence of the algorithm be proved under an even weaker condition than
Assumption 7? As noted earlier, conventional superlinear convergence analysis for
interior-point methods (in both linear and nonlinear cases) makes heavy use of the
O(�) estimate for the fast step (38), which may no longer hold when Assumption 7
is relaxed. Nevertheless, it may be possible to recover superlinear convergence based
on an O(�) estimate of some projection of the fast step.

We close with a glimpse of the algorithm's behavior in the absence of roundo�
error by considering a modi�cation of Example 2, in which the initial value of the z2
component is set to zero. All subsequent iterates of the algorithm retain z2 = 0, so
that the second column of DgB(z)

T is zero and this matrix has constant rank one at
all iterations. Numerical e�ects do not contaminate the projection of the computed
solution of ��B into kerDgB(z)T in this particular case, since, in contrast with Ta-
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Table 4

Example 2 with z0
2
= 0: Asymptotic behavior

Iteration Step Type � k��Bk=�
5 fast .191(-3) .506(-1)
6 fast .265(-5) .500(-1)
7 fast .881(-8) .148(00)
8 fast .344(-11) .600(-1)
9 terminate .543(-16)

bles 2 and 3, the zero column in this matrix makes it unnecessary to perform any
arithmetic on the corresponding column of the matrix in (12) during the factoriza-
tion. We see in Table 4 that the estimate ��B = O(�) holds even for small values of
�, even though this problem is degenerate and does not satisfy the CRCQ.
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